Source code for nidata.localizer.brainomics

# *- encoding: utf-8 -*-
# Author: Ben Cipollini
# License: simplified BSD

from ...core.datasets import NilearnDataset


[docs]class BrainomicsDataset(NilearnDataset): fetcher_function = 'nilearn.datasets.fetch_localizer_contrasts' nilearn_name = 'brainomics_localizer'
[docs]def fetch_localizer_calculation_task(n_subjects=None, data_dir=None, url=None, verbose=1): """Fetch calculation task contrast maps from the localizer. This function is only a caller for the fetch_localizer_contrasts in order to simplify examples reading and understanding. The 'calculation (auditory and visual cue)' contrast is used. Parameters ---------- n_subjects: int, optional The number of subjects to load. If None is given, all 94 subjects are used. data_dir: string, optional Path of the data directory. Used to force data storage in a specified location. url: string, optional Override download URL. Used for test only (or if you setup a mirror of the data). verbose: int, optional verbose level (0 means no message). Returns ------- data: dict Dictionary-like object, the interest attributes are : 'cmaps': string list Paths to nifti contrast maps """ data = fetch_localizer_contrasts(["calculation (auditory and visual cue)"], n_subjects=n_subjects, get_tmaps=False, get_masks=False, get_anats=False, data_dir=data_dir, url=url, resume=True, verbose=verbose) data.pop('tmaps') data.pop('masks') data.pop('anats') return data
[docs]def fetch_localizer_contrasts(contrasts, n_subjects=None, get_tmaps=False, get_masks=False, get_anats=False, data_dir=None, url=None, resume=True, verbose=1): return BrainomicsDataset(data_dir=data_dir).fetch(contrasts=contrasts, n_subjects=n_subjects, get_tmaps=get_tmaps, get_masks=get_masks, get_anats=get_anats, url=url, resume=resume, verbose=verbose)