Source code for nidata.atlas.msdl_atlas
# *- encoding: utf-8 -*-
# Author: Alexandre Abraham, Philippe Gervais
# License: simplified BSD
import os.path as op
from ...core.datasets import HttpDataset
[docs]class MSDLDataset(HttpDataset):
"""Download and load the MSDL brain atlas.
Parameters
----------
data_dir: string, optional
Path of the data directory. Used to force data storage in a specified
location. Default: None
url: string, optional
Override download URL. Used for test only (or if you setup a mirror of
the data).
Returns
-------
data: dict
Dictionary-like object, the interest attributes are :
- 'labels': str. Path to csv file containing labels.
- 'maps': str. path to nifti file containing regions definition.
References
----------
:Download:
https://team.inria.fr/parietal/files/2015/01/MSDL_rois.zip
:Paper to cite:
`Multi-subject dictionary learning to segment an atlas of brain
spontaneous activity <http://hal.inria.fr/inria-00588898/en>`_
Gaël Varoquaux, Alexandre Gramfort, Fabian Pedregosa, Vincent Michel,
Bertrand Thirion. Information Processing in Medical Imaging, 2011,
pp. 562-573, Lecture Notes in Computer Science.
:Other references:
`Learning and comparing functional connectomes across subjects
<http://hal.inria.fr/hal-00812911/en>`_.
Gaël Varoquaux, R.C. Craddock NeuroImage, 2013.
"""
[docs] def fetch(self, url=None, resume=True, verbose=1):
url = 'https://team.inria.fr/parietal/files/2015/01/MSDL_rois.zip'
opts = {'uncompress': True}
files = [(op.join('MSDL_rois', 'msdl_rois_labels.csv'), url, opts),
(op.join('MSDL_rois', 'msdl_rois.nii'), url, opts)]
files = self.fetcher.fetch(files, force=not resume, verbose=verbose)
return dict(labels=files[0], maps=files[1])
[docs]def fetch_msdl_atlas(data_dir=None, url=None, resume=True, verbose=1):
return MSDLDataset(data_dir=data_dir) \
.fetch(url=url, resume=resume, verbose=verbose)